|
IPM Individual Predictive Maintenance - Individuelle Prognose von Motordefekten von Schienenfahrzeugen Maintenance of diesel engines of rail vehicles has been carried out reactively or preventively at periodic intervals. However, a reactive approach is usually associated with high follow-up costs. Periodic preventive measures also generate avoidable maintenance costs since components that could often have been used for a longer period of time are replaced as a precaution. Predictive maintenance, which makes measures necessary only when they are needed, can minimize expenses without increasing the risk of engine failures and resulting costs. In the course of the project, typical damage patterns of various engines were analyzed to determine the necessary sensor technology for early wear detection and to define target criteria for fault forecasts. Subsequently, a sensor concept was developed that allows retrofitting of engines with a toolbox system to monitor economically relevant damage. After the requirements analysis, the toolbox and a procedure for the automated selection of predictive models were implemented. Finally, the toolbox was evaluated on the DB Fahrzeuginstandhaltung test bench at the Bremen plant. The result of the project is a toolbox to collect and evaluate sensor data. A special feature is that a suitable predictive model is automatically selected to estimate a component's remaining lifetime. In the application case of diesel engines of rail vehicles, anomalies in the operating behavior, which were caused by, for example, an imbalance of the turbocharger shaft, can be identified clearly. Based on such information on the engine's current condition, optimized maintenance planning can be carried out. However, it should be noted that relative to the high complexity of a diesel engine, only a few components could be considered, and few experiments could be carried out. Thus, sufficient potential for future research projects remains. Contact persons: H. Engbers (Project manager) S. Leohold Funded by: Land Bremen / EFRE Duration: 01.02.2019 - 31.10.2020 See project's publications List all projects |